New indefinite integrals of Heun functions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normalization integrals of orthogonal Heun functions

A formula for evaluating the quadratic normalization integrals of orthogonal Heun functions over the real interval 0 ≤ x ≤ 1 is derived using a simple limiting procedure based upon the associated differential equation. The resulting expression gives the value of the normalization integral explicitly in terms of the local power-series solutions about x = 0 and x = 1 and their derivatives. This p...

متن کامل

On indefinite BV-integrals

In 1986 Bruckner, Fleissner and Foran [2] obtained a descriptive definition of a minimal extension of the Lebesgue integral which integrates the derivative of any differentiable function. Recently, Bongiorno, Di Piazza and Preiss [1] showed that this minimal integral can be obtained from McShane’s definition of the Lebesgue integral [4] by imposing a mild regularity condition on McShane’s parti...

متن کامل

Heun functions versus elliptic functions

We present some recent progresses on Heun functions, gathering results from classical analysis up to elliptic functions. We describe Picard’s generalization of Floquet’s theory for differential equations with doubly periodic coefficients and give the detailed forms of the level one Heun functions in terms of Jacobi theta functions. The finite-gap solutions give an interesting alternative integr...

متن کامل

A Note on Indefinite Integrals

1. G. H. Hardy and M. Riesz, The general theory of Dirichlet's series, London, 1915. 2. E. Kogbetliantz, Sur la sommation des séries divergentes par les moyennes simples et doubles, Ann. École Norm. (3) vol. 42 (1925) pp. 193-216. 3. Otto Szász, Verallgemeinerung eines Littlewood'sehen Salzes über Potenzreihen, J. London Math. Soc. vol. 3 (1928) pp. 254-262. 4. A. Zygmund, Remarque sur la somma...

متن کامل

Series expansion of Wiener integrals via block pulse functions

In this paper, a suitable numerical method based on block pulse functions is introduced to approximate the Wiener integrals which the exact solution of them is not exist or it may be so hard to find their exact solutions. Furthermore, the error analysis of this method is given. Some numerical examples are provided which show that the approximation method has a good degree of accuracy. The main ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Integral Transforms and Special Functions

سال: 2018

ISSN: 1065-2469,1476-8291

DOI: 10.1080/10652469.2018.1499021